We investigate the properties of the Wick square of Gaussian white noises through a new method to perform nonlinear operations on Hida distributions. This method lays in between the Wick product interpretation and the usual definition of nonlinear functions. We prove an Itˆo-type formula and solve stochastic differential equations driven by the renormalized square of the Gaussian white noise. Our approach works with standard assumptions on the coefficients of the equations, global Lipschitz continuity, and produces existence and uniqueness results in the space where the noise lives. The linear case is studied in details and positivity of the solution is proved.

On stochastic differential equations driven by the renormalized square of the Gaussian white noise

LANCONELLI, ALBERTO
2015-01-01

Abstract

We investigate the properties of the Wick square of Gaussian white noises through a new method to perform nonlinear operations on Hida distributions. This method lays in between the Wick product interpretation and the usual definition of nonlinear functions. We prove an Itˆo-type formula and solve stochastic differential equations driven by the renormalized square of the Gaussian white noise. Our approach works with standard assumptions on the coefficients of the equations, global Lipschitz continuity, and produces existence and uniqueness results in the space where the noise lives. The linear case is studied in details and positivity of the solution is proved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/146588
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact