We give sufficient conditions ensuring the strong ergodic property of unique mixing for C-dynamical systems arising from Yang-Baxter-Hecke quantisation. We discuss whether they can be applied to some important cases including Monotone, Boson, Fermion and Boolean C-algebras in a unified version. The Monotone and the Boolean cases are treated in full generality, the Bose/Fermi cases being already widely investigated. In fact, on one hand we show that the set of stationary stochastic processes are isomorphic to a segment in both the Monotone and Boolean situations, on the other hand the Boolean processes enjoy the very strong property of unique mixing with respect to the fixed point subalgebra and the Monotone ones do not.

Ergodic theorems in Quantum Probability: an application to the monotone stochastic processes

CRISMALE, VITONOFRIO;LU, Yungang
2017-01-01

Abstract

We give sufficient conditions ensuring the strong ergodic property of unique mixing for C-dynamical systems arising from Yang-Baxter-Hecke quantisation. We discuss whether they can be applied to some important cases including Monotone, Boson, Fermion and Boolean C-algebras in a unified version. The Monotone and the Boolean cases are treated in full generality, the Bose/Fermi cases being already widely investigated. In fact, on one hand we show that the set of stationary stochastic processes are isomorphic to a segment in both the Monotone and Boolean situations, on the other hand the Boolean processes enjoy the very strong property of unique mixing with respect to the fixed point subalgebra and the Monotone ones do not.
File in questo prodotto:
File Dimensione Formato  
CriFidLuASN17.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 717.17 kB
Formato Adobe PDF
717.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
download.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 267.58 kB
Formato Adobe PDF
267.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/146584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact