Implant-related infection of biomaterials is one of the main causes of arthroplasty and osteosynthesis failure. Bacteria, such as the rapidly-emerging Multi Drug Resistant (MDR) pathogen Acinetobacter Baumannii, initiate the infection by adhering to biomaterials and forming a biofilm. Since the implant surface plays a crucial role in early bacterial adhesion phases, titanium was electrochemically modified by an Anodic Spark Deposition (ASD) treatment, developed previously and thought to provide osseo-integrative properties. In this study, the treatment was modified to insert gallium or silver onto the titanium surface, to provide antibacterial properties.The material was characterized morphologically, chemically, and mechanically; biological properties were investigated by direct cytocompatibility assay, Alkaline Phosphatase (ALP) activity, Scanning Electron Microscopy (SEM), and Immunofluorescent (IF) analysis; antibacterial activity was determined by counting Colony Forming Units, and viability assay.The various ASD-treated surfaces showed similar morphology, micrometric pore size, and uniform pore distribution. Of the treatments studied, gallium-doped specimens showed the best ALP synthesis and antibacterial properties.This study demonstrates the possibility of successfully doping the surface of titanium with gallium or silver, using the ASD technique; this approach can provide antibacterial properties and maintain high osseo-integrative potential.

The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii

DE GIGLIO, Elvira;
2016-01-01

Abstract

Implant-related infection of biomaterials is one of the main causes of arthroplasty and osteosynthesis failure. Bacteria, such as the rapidly-emerging Multi Drug Resistant (MDR) pathogen Acinetobacter Baumannii, initiate the infection by adhering to biomaterials and forming a biofilm. Since the implant surface plays a crucial role in early bacterial adhesion phases, titanium was electrochemically modified by an Anodic Spark Deposition (ASD) treatment, developed previously and thought to provide osseo-integrative properties. In this study, the treatment was modified to insert gallium or silver onto the titanium surface, to provide antibacterial properties.The material was characterized morphologically, chemically, and mechanically; biological properties were investigated by direct cytocompatibility assay, Alkaline Phosphatase (ALP) activity, Scanning Electron Microscopy (SEM), and Immunofluorescent (IF) analysis; antibacterial activity was determined by counting Colony Forming Units, and viability assay.The various ASD-treated surfaces showed similar morphology, micrometric pore size, and uniform pore distribution. Of the treatments studied, gallium-doped specimens showed the best ALP synthesis and antibacterial properties.This study demonstrates the possibility of successfully doping the surface of titanium with gallium or silver, using the ASD technique; this approach can provide antibacterial properties and maintain high osseo-integrative potential.
File in questo prodotto:
File Dimensione Formato  
2016_Biomaterials.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.38 MB
Formato Adobe PDF
3.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
De Giglio Biomat 2016 acc man.pdf

accesso aperto

Descrizione: versione accettata per la pubblicazione
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 949.73 kB
Formato Adobe PDF
949.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/145937
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 111
  • ???jsp.display-item.citation.isi??? 102
social impact