Starting from a new sum decomposition of $ W^{1,p}(R^N)cap W^{1,q}(R^N)$ and using a variational approach, we investigate the existence of multiple weak solutions of a (p,q)-Laplacian equation on $R^N$, for 1 < q < p < N, with a sign-changing potential and a Caratheodory reaction term satisfying the celebrated Ambrosetti-Rabinowitz condition. Our assumptions are mild and different from those used in related papers and moreover our results improve or complement previous ones for the single p-Laplacian

On a class of superlinear (p,q)-Laplacian type equations on R^N

CANDELA, Anna Maria;SALVATORE, Addolorata
2016-01-01

Abstract

Starting from a new sum decomposition of $ W^{1,p}(R^N)cap W^{1,q}(R^N)$ and using a variational approach, we investigate the existence of multiple weak solutions of a (p,q)-Laplacian equation on $R^N$, for 1 < q < p < N, with a sign-changing potential and a Caratheodory reaction term satisfying the celebrated Ambrosetti-Rabinowitz condition. Our assumptions are mild and different from those used in related papers and moreover our results improve or complement previous ones for the single p-Laplacian
File in questo prodotto:
File Dimensione Formato  
[70]-BCS_ReprintJMAA2016.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 370.12 kB
Formato Adobe PDF
370.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/145523
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 33
social impact