Various Lactobacillus reuteri strains were investigated as whole cell catalysts for the bioreduction of acetophenone into optically active (R)-1-phenylethanol. L. reuteri DSM 20016 strain gave an almost complete substrate conversion, in a short reaction time and enantiomeric excess up to 99%. The acetophenone bioreduction was used as a model reaction to optimize temperature and reducing equivalent source (glucose, lactose, cheese way and lignocellulosic hydrolysates) to accomplish the biotransformation. The reduction of acetophenones into optically active (R)-1-arylethanols was also exploited to study L. reuteri DSM 20016 substrate specificity. In most of the cases, optically active (R)-1-arylethanols have been obtained with both excellent chemical and optical yields and with (R)-enantiopreference, through a cheap, simple and efficient process.
Cheap and environmentally sustainable stereoselective arylketones reduction by Lactobacillus reuteri whole cells
PERNA, FILIPPO;RICCI, Maria Antonietta;SCILIMATI, Antonio;MENA, MARIA CONCETTA;PISANO, ISABELLA;PALMIERI, Luigi;AGRIMI, GENNARO
;VITALE, PAOLA
2016-01-01
Abstract
Various Lactobacillus reuteri strains were investigated as whole cell catalysts for the bioreduction of acetophenone into optically active (R)-1-phenylethanol. L. reuteri DSM 20016 strain gave an almost complete substrate conversion, in a short reaction time and enantiomeric excess up to 99%. The acetophenone bioreduction was used as a model reaction to optimize temperature and reducing equivalent source (glucose, lactose, cheese way and lignocellulosic hydrolysates) to accomplish the biotransformation. The reduction of acetophenones into optically active (R)-1-arylethanols was also exploited to study L. reuteri DSM 20016 substrate specificity. In most of the cases, optically active (R)-1-arylethanols have been obtained with both excellent chemical and optical yields and with (R)-enantiopreference, through a cheap, simple and efficient process.File | Dimensione | Formato | |
---|---|---|---|
Journal of Molecular Catalysis B_Enzymatic 124_2016_29–37.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
916.07 kB
Formato
Adobe PDF
|
916.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.