The need for feasible inference in Probabilistic Graphical Models (PGMs) has lead to tractable models like Sum-Product Networks (SPNs). Their highly expressive power and their ability to provide exact and tractable inference make them very attractive for several real world applications, from computer vision to NLP. Recently, great attention around SPNs has focused on structure learning, leading to different algorithms being able to learn both the network and its parameters from data. Here, we enhance one of the best structure learner, LearnSPN, aiming to improve both the structural quality of the learned networks and their achieved likelihoods. Our algorithmic variations are able to learn simpler, deeper and more robust networks. These results have been obtained by exploiting some insights in the building process done by LearnSPN, by hybridizing the network adopting tree-structured models as leaves, and by blending bagging estimations into mixture creation. We prove our claims by empirically evaluating the learned SPNs on several benchmark datasets against other competitive SPN and PGM structure learners.

Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning

VERGARI, ANTONIO;DI MAURO, NICOLA;ESPOSITO, Floriana
2015-01-01

Abstract

The need for feasible inference in Probabilistic Graphical Models (PGMs) has lead to tractable models like Sum-Product Networks (SPNs). Their highly expressive power and their ability to provide exact and tractable inference make them very attractive for several real world applications, from computer vision to NLP. Recently, great attention around SPNs has focused on structure learning, leading to different algorithms being able to learn both the network and its parameters from data. Here, we enhance one of the best structure learner, LearnSPN, aiming to improve both the structural quality of the learned networks and their achieved likelihoods. Our algorithmic variations are able to learn simpler, deeper and more robust networks. These results have been obtained by exploiting some insights in the building process done by LearnSPN, by hybridizing the network adopting tree-structured models as leaves, and by blending bagging estimations into mixture creation. We prove our claims by empirically evaluating the learned SPNs on several benchmark datasets against other competitive SPN and PGM structure learners.
2015
978-3-319-23524-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/144689
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 38
social impact