A search for narrow resonances with a mass of at least 1 TeV in the dijet mass spectrum is performed using pp collisions at root s = 7 TeV corresponding to an integrated luminosity of 1 fb(-1), collected by the CMS experiment at the LHC. No resonances are observed. Upper limits at the 95 confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, and gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95 confidence level: string resonances with mass less than 4.00 TeV, E-6 diquarks with mass less than 3.52 TeV, excited quarks with mass less than 2.49 TeV, axigluons and colorons with mass less than 2.47 TeV, and W' bosons with mass less than 1.51 TeV. These results extend previous exclusions from the dijet mass search technique. (C) 2011 CERN. Published by Elsevier B.V. All rights reserved.
Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS
ABBRESCIA, Marcello;BARBONE, LUCIA;CALABRIA, CESARE;DE PALMA, Mauro;LUSITO, LETIZIA;MARANGELLI, Bartolomeo;MY, Salvatore;NUZZO, Salvatore Vitale;PACIFICO, NICOLA;POMPILI, ALEXIS;SELVAGGI, Giovanna;
2011-01-01
Abstract
A search for narrow resonances with a mass of at least 1 TeV in the dijet mass spectrum is performed using pp collisions at root s = 7 TeV corresponding to an integrated luminosity of 1 fb(-1), collected by the CMS experiment at the LHC. No resonances are observed. Upper limits at the 95 confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, and gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95 confidence level: string resonances with mass less than 4.00 TeV, E-6 diquarks with mass less than 3.52 TeV, excited quarks with mass less than 2.49 TeV, axigluons and colorons with mass less than 2.47 TeV, and W' bosons with mass less than 1.51 TeV. These results extend previous exclusions from the dijet mass search technique. (C) 2011 CERN. Published by Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.