WeconsidertheKawahara-Korteweg-deVriesequation,whichcon- tains nonlinear dispersive effects. We prove that as the dispersion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of the Burgers equation. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the L^p setting.

A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation

COCLITE, Giuseppe Maria;DI RUVO, LORENZO
2016-01-01

Abstract

WeconsidertheKawahara-Korteweg-deVriesequation,whichcon- tains nonlinear dispersive effects. We prove that as the dispersion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of the Burgers equation. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the L^p setting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/142358
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact