We study a nonlinear elliptic system of Lane–Emden type in RN, N>2, which is equivalent to a fourth order quasilinear elliptic equation involving a suitable ‘‘sublinear’’ term. Thanks to some compact imbeddings in weighted Sobolev spaces, existence and multiplicity results are proved by means of a generalized Weierstrass Theorem and a variant of the Symmetric Mountain Pass Theorem. These results apply in particular to a biharmonic equation under Navier conditions in RN.

Some results on weighted subquadratic Lane-Emden Elliptic Systems in unbounded domains

BARILE, SARA;SALVATORE, Addolorata
2016-01-01

Abstract

We study a nonlinear elliptic system of Lane–Emden type in RN, N>2, which is equivalent to a fourth order quasilinear elliptic equation involving a suitable ‘‘sublinear’’ term. Thanks to some compact imbeddings in weighted Sobolev spaces, existence and multiplicity results are proved by means of a generalized Weierstrass Theorem and a variant of the Symmetric Mountain Pass Theorem. These results apply in particular to a biharmonic equation under Navier conditions in RN.
File in questo prodotto:
File Dimensione Formato  
RLM_694_rev1.pdf

non disponibili

Descrizione: Articolo di ricerca
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 117.4 kB
Formato Adobe PDF
117.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/141093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact