The variable-step boundary value methods based on reverse k-step Adams schemes are defined for the solution of initial value problems. The paper discusses attainable convergence orders, conditioning of resulting discretization matrices and introduces a grid redistribution strategy based on equidistribution of the local truncation error. An adaptive algorithm is tested on several linear and nonlinear examples and the results strongly support the theory. The method is suitable for a parallel solution of stiff initial value problems.
Variable step boundary value methods based on reverse Adams schemes and their grid redistribution
AMODIO, Pierluigi;MAZZIA, Francesca
1995-01-01
Abstract
The variable-step boundary value methods based on reverse k-step Adams schemes are defined for the solution of initial value problems. The paper discusses attainable convergence orders, conditioning of resulting discretization matrices and introduces a grid redistribution strategy based on equidistribution of the local truncation error. An adaptive algorithm is tested on several linear and nonlinear examples and the results strongly support the theory. The method is suitable for a parallel solution of stiff initial value problems.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.