In this paper we study a class of quasilinear elliptic systems of the type \[\left\{\begin{array}{ll} - \divg(a_1(x,\nabla u_1,\nabla u_2))\ =\ f_1(x,u_1,u_2) & \text{in } \Omega,\\ - \divg(a_2(x,\nabla u_1,\nabla u_2))\ =\ f_2(x,u_1,u_2) & \text{in } \Omega,\\ u_1 = u_2 = 0 & \text{on } \partial \Omega, \end{array}\right.\] with $\Omega$ bounded domain in $\R^N$. We assume that $A : \Omega \times \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R}$, $F : \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ exist such that $a=(a_1,a_2)=\nabla A$ satisfies the so called Leray-Lions conditions and $f_1=\frac{\partial F}{\partial u_1}$, $f_2=\frac{\partial F}{\partial u_2}$ are Carathéodory functions with {\sl subcritical growth}. The approach relies on variational methods and, in particular, on a cohomological local splitting which allows one to prove the existence of a nontrivial solution.

Weak solutions of quasilinear elliptic systems via a cohomological index

CANDELA, Anna Maria;
2010

Abstract

In this paper we study a class of quasilinear elliptic systems of the type \[\left\{\begin{array}{ll} - \divg(a_1(x,\nabla u_1,\nabla u_2))\ =\ f_1(x,u_1,u_2) & \text{in } \Omega,\\ - \divg(a_2(x,\nabla u_1,\nabla u_2))\ =\ f_2(x,u_1,u_2) & \text{in } \Omega,\\ u_1 = u_2 = 0 & \text{on } \partial \Omega, \end{array}\right.\] with $\Omega$ bounded domain in $\R^N$. We assume that $A : \Omega \times \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R}$, $F : \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ exist such that $a=(a_1,a_2)=\nabla A$ satisfies the so called Leray-Lions conditions and $f_1=\frac{\partial F}{\partial u_1}$, $f_2=\frac{\partial F}{\partial u_2}$ are Carathéodory functions with {\sl subcritical growth}. The approach relies on variational methods and, in particular, on a cohomological local splitting which allows one to prove the existence of a nontrivial solution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/13568
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact