Building rules on top of ontologies is the ultimate goal of the logical layer of the Semantic Web. To this aim, an ad-hoc markup language for this layer is currently under discussion. It is intended to follow the tradition of hybrid knowledge representation and reasoning systems, such as AL-log that integrates the description logic ALC and the function-free Horn clausal language DATALOG. In this paper, we consider the problem of automating the acquisition of these rules for the Semantic Web. We propose a general framework for rule induction that adopts the methodological apparatus of Inductive Logic Programming and relies on the expressive and deductive power of AL-log. The framework is valid whatever the scope of induction (description versus prediction) is. Yet, for illustrative purposes, we also discuss an instantiation of the framework which aims at description and turns out to be useful in Ontology Refinement.

Building Rules on Top of Ontologies for the Semantic Web with Inductive Logic Programming

LISI, Francesca Alessandra
2008-01-01

Abstract

Building rules on top of ontologies is the ultimate goal of the logical layer of the Semantic Web. To this aim, an ad-hoc markup language for this layer is currently under discussion. It is intended to follow the tradition of hybrid knowledge representation and reasoning systems, such as AL-log that integrates the description logic ALC and the function-free Horn clausal language DATALOG. In this paper, we consider the problem of automating the acquisition of these rules for the Semantic Web. We propose a general framework for rule induction that adopts the methodological apparatus of Inductive Logic Programming and relies on the expressive and deductive power of AL-log. The framework is valid whatever the scope of induction (description versus prediction) is. Yet, for illustrative purposes, we also discuss an instantiation of the framework which aims at description and turns out to be useful in Ontology Refinement.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/13531
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 23
social impact