The relaxation dynamics of charge carriers of organic capped TiO2 nanorods dispersed in chloroform was investigated by femtosecond transient absorption in a weak-excitation regime. Anisotropic TiO2 nanocrystals were excited in the UVvis range, using different pump wavelengths, namely above (300 nm), close to (350 nm), and below (430 nm) the direct band gap of anatase TiO2. We show that the ultrafast dynamics strongly depends on excitation wavelength and determine the time constants of all the processes entering the relaxation. Moreover, we demonstrate that two transient absorption bands at 500 and 700 nm, typically attributed to trapped h(+) and e, respectively, are accessible only when TiO2 is photoexcited well above the band gap, while there is no evidence of such bands when TiO2 is photoexcited close to or below its band gap. In such cases the observed dynamics are attributed to trapped excitons.

Excitation-Dependent Ultrafast Carrier Dynamics of Colloidal TiO2 Nanorods in Organic Solvent

TRIGGIANI, LEONARDO;Brunetti A;Curri ML;AGOSTIANO, Angela;TOMMASI, Raffaele
2014-01-01

Abstract

The relaxation dynamics of charge carriers of organic capped TiO2 nanorods dispersed in chloroform was investigated by femtosecond transient absorption in a weak-excitation regime. Anisotropic TiO2 nanocrystals were excited in the UVvis range, using different pump wavelengths, namely above (300 nm), close to (350 nm), and below (430 nm) the direct band gap of anatase TiO2. We show that the ultrafast dynamics strongly depends on excitation wavelength and determine the time constants of all the processes entering the relaxation. Moreover, we demonstrate that two transient absorption bands at 500 and 700 nm, typically attributed to trapped h(+) and e, respectively, are accessible only when TiO2 is photoexcited well above the band gap, while there is no evidence of such bands when TiO2 is photoexcited close to or below its band gap. In such cases the observed dynamics are attributed to trapped excitons.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/135028
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact