Room temperature ionic liquids are currently used as functional materials in several application and their optical investigation can provide a better understanding of their physical and chemical behavior. Absorption and emission properties of imidazolium-based ILs have been attributed to the imidazolium moiety and related to the presence of energetically different aggregates. Here, time-integrated and time-resolved investigation has been carried out on 1-alkyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids with different chain lengths in order to probe the occurrence of energy transfer processes, and hence to disclose the presence of various states with different energy. Such a study contributes to provide relevant insight on the effect of alkyl chain and anion type on the emission characteristics, and, hence, on the presence of associated structures.
Spectroscopic study on imidazolium based ionic liquids: effect of alkyl chain length and anion
TRIGGIANI, LEONARDO;TOMMASI, Raffaele;AGOSTIANO, Angela;Curri M. L;
2012-01-01
Abstract
Room temperature ionic liquids are currently used as functional materials in several application and their optical investigation can provide a better understanding of their physical and chemical behavior. Absorption and emission properties of imidazolium-based ILs have been attributed to the imidazolium moiety and related to the presence of energetically different aggregates. Here, time-integrated and time-resolved investigation has been carried out on 1-alkyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids with different chain lengths in order to probe the occurrence of energy transfer processes, and hence to disclose the presence of various states with different energy. Such a study contributes to provide relevant insight on the effect of alkyl chain and anion type on the emission characteristics, and, hence, on the presence of associated structures.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.