In this paper we consider the singular value decomposition (SVD) of a fundamental matrix solution in order to approximate the Lyapunov and exponential dichotomy spectra of a given system. One of our main results is to prove that SVD techniques are sound approaches for systems with stable and distinct Lyapunov exponents. We also show how the information which emerges with the SVD techniques can be used to obtain information on the growth directions associated to given spectral intervals.

The singular value decomposition to approximate spectra of dynamical systems. Theoretical aspects

ELIA, CINZIA
2006-01-01

Abstract

In this paper we consider the singular value decomposition (SVD) of a fundamental matrix solution in order to approximate the Lyapunov and exponential dichotomy spectra of a given system. One of our main results is to prove that SVD techniques are sound approaches for systems with stable and distinct Lyapunov exponents. We also show how the information which emerges with the SVD techniques can be used to obtain information on the growth directions associated to given spectral intervals.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/13380
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact