We introduce the notion of Gröbner S-basis of an ideal of the free associative algebra K<X> over a field K invariant under the action of a semigroup S of endomorphisms of the algebra. We calculate the Gröbner S-bases of the ideal corresponding to the universal enveloping algebra of the free nilpotent of class 2 Lie algebra and of the T-ideal generated by the polynomial identity [x, y, z] = 0, with respect to suitable semigroups S. In the latter case, if |X | > 2, the ordinary Gröbner basis is infinite and our Gröbner S-basis is finite. We obtain also explicit minimal Gröbner bases of these ideals.

Grobner bases of ideals invariant under endomorphisms

LA SCALA, Roberto
2006-01-01

Abstract

We introduce the notion of Gröbner S-basis of an ideal of the free associative algebra K over a field K invariant under the action of a semigroup S of endomorphisms of the algebra. We calculate the Gröbner S-bases of the ideal corresponding to the universal enveloping algebra of the free nilpotent of class 2 Lie algebra and of the T-ideal generated by the polynomial identity [x, y, z] = 0, with respect to suitable semigroups S. In the latter case, if |X | > 2, the ordinary Gröbner basis is infinite and our Gröbner S-basis is finite. We obtain also explicit minimal Gröbner bases of these ideals.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/13368
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact