Consider the Singular Value Decomposition (SVD) of a two-parameter function $A(x)$, $x\in \Omega\subset \R^2$, where $\Omega$ is simply connected and compact, with boundary $\Gamma$. No matter how differentiable the function $A$ is (even analytic), in general the singular values lose all smoothness at points where they coalesce. In thiswork, we propose and implement algorithms which locate points in $\Omega$ where the singular values coalesce. Our algorithms are based on the interplay between coalescing singular values in $\Omega$, and the periodicity of the SVD-factors as one completes a loop along $\Gamma$.

Singular Values of Two-Parameter Matrices: An Algorithm To Accurately Find Their Intersections

PUGLIESE, Alessandro
2008

Abstract

Consider the Singular Value Decomposition (SVD) of a two-parameter function $A(x)$, $x\in \Omega\subset \R^2$, where $\Omega$ is simply connected and compact, with boundary $\Gamma$. No matter how differentiable the function $A$ is (even analytic), in general the singular values lose all smoothness at points where they coalesce. In thiswork, we propose and implement algorithms which locate points in $\Omega$ where the singular values coalesce. Our algorithms are based on the interplay between coalescing singular values in $\Omega$, and the periodicity of the SVD-factors as one completes a loop along $\Gamma$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/13326
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact