In this paper we prove the existence and regularity of positive solutions of the homogeneous Dirichlet problem −∆u = g(x, u) in Ω, u = 0 on ∂ Ω, where g(x, u) can be singular as u → 0+ and 0 ≤ g(x, u) ≤ φ0 (x) up or 0 ≤ g(x, u) ≤ φ0 (x)(1 + 1/u^p ), with φ_0∈ L^m(Ω), 1≤ m. There are no assumptions on the monotonicity of g(x, ·) and the existence of super- or sub-solutions.

On a Dirichlet problem in bounded domains with singular nonlinearity

COCLITE, Giuseppe Maria;COCLITE, Mario
2013-01-01

Abstract

In this paper we prove the existence and regularity of positive solutions of the homogeneous Dirichlet problem −∆u = g(x, u) in Ω, u = 0 on ∂ Ω, where g(x, u) can be singular as u → 0+ and 0 ≤ g(x, u) ≤ φ0 (x) up or 0 ≤ g(x, u) ≤ φ0 (x)(1 + 1/u^p ), with φ_0∈ L^m(Ω), 1≤ m. There are no assumptions on the monotonicity of g(x, ·) and the existence of super- or sub-solutions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/132070
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact