Various proteins that are required for the building of new complete human immunodeficiency type 1 virions (HIV-1) are coded by unspliced or partly spliced virus-derived mRNAs. HIV-1 has developed special strategies for moving these mRNAs to the cytoplasm to be translated. In the nucleus of the infected cell the virus-derived protein Regulator of expression of viral proteins (Rev) can bind both the viral intron-containing mRNAs and the cellular co-factor HIV-1 Rev binding protein (HRB) and this complex may be shuttled through the nuclear pores. HRB genes have been relatively well conserved during evolution, from Drosophila to humans. However, as a consequence of reading-frame shifts due to nt insertions/deletions, the protein products generated may differ considerably from the prototypal HRB protein, which comprises one Arf-GAP zinc finger domain, several Phenylalanine-Glycine (FG) motifs and four Asparagine-Proline-Phenylalanine (NPF) motifs. This variability is best exemplified by four HRB proteins of the dog, which are discussed here in more detail. The hypothesis is advanced that atypical HRB proteins may not be able to bind Rev and possibly have other, still undetermined, functions. Since the cellular co-factor HRB is essential for viral replication and spread but is not required for cell viability and main bodily functions, it might be an attractive candidate for anti-HIV-1 drug targeting.

The HIV-1 Rev Binding Family of Proteins - The Dog Proteins as a Study Model

PANARO, Maria Antonietta;CIANCIULLI, ANTONIA;
2008-01-01

Abstract

Various proteins that are required for the building of new complete human immunodeficiency type 1 virions (HIV-1) are coded by unspliced or partly spliced virus-derived mRNAs. HIV-1 has developed special strategies for moving these mRNAs to the cytoplasm to be translated. In the nucleus of the infected cell the virus-derived protein Regulator of expression of viral proteins (Rev) can bind both the viral intron-containing mRNAs and the cellular co-factor HIV-1 Rev binding protein (HRB) and this complex may be shuttled through the nuclear pores. HRB genes have been relatively well conserved during evolution, from Drosophila to humans. However, as a consequence of reading-frame shifts due to nt insertions/deletions, the protein products generated may differ considerably from the prototypal HRB protein, which comprises one Arf-GAP zinc finger domain, several Phenylalanine-Glycine (FG) motifs and four Asparagine-Proline-Phenylalanine (NPF) motifs. This variability is best exemplified by four HRB proteins of the dog, which are discussed here in more detail. The hypothesis is advanced that atypical HRB proteins may not be able to bind Rev and possibly have other, still undetermined, functions. Since the cellular co-factor HRB is essential for viral replication and spread but is not required for cell viability and main bodily functions, it might be an attractive candidate for anti-HIV-1 drug targeting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/13194
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact