CLC-K chloride channels play a crucial role in kidney physiology and genetic mutations, affecting their function are responsible for severe renal salt loss in humans. Thus, compounds that selectively bind to CLC-Ka and/or CLC-Kb channels and modulate their activity may have a significant therapeutic potential. Here, we compare the biophysical and pharmacological behaviors of human CLC-K channels expressed either in HEK293 cells or in Xenopus oocytes and we show that CLC-K channel properties are greatly influenced by the biochemical environment surrounding the channels. Indeed, in HEK293 cells the potentiating effect of niflumic acid (NFA) on CLC-Ka/barttin and CLC-Kb/barttin channels seems to be absent while the blocking efficacy of niflumic acid and benzofuran derivatives observed in oocytes is preserved. The NFA block does not seem to involve the accessory subunit barttin on CLC-K1 channels. In addition, the sensitivity of CLC-Ks to external Ca(2+) is reduced in HEK293 cells. Based on our findings, we propose that mammalian cell lines are a suitable expression system for the pharmacological profiling of CLC-Ks.

Targeting kidney CLC-K channels: pharmacological profile in a human cell line versus Xenopus oocytes

IMBRICI, Paola;LIANTONIO, ANTONELLA;CONTE, Diana
2014-01-01

Abstract

CLC-K chloride channels play a crucial role in kidney physiology and genetic mutations, affecting their function are responsible for severe renal salt loss in humans. Thus, compounds that selectively bind to CLC-Ka and/or CLC-Kb channels and modulate their activity may have a significant therapeutic potential. Here, we compare the biophysical and pharmacological behaviors of human CLC-K channels expressed either in HEK293 cells or in Xenopus oocytes and we show that CLC-K channel properties are greatly influenced by the biochemical environment surrounding the channels. Indeed, in HEK293 cells the potentiating effect of niflumic acid (NFA) on CLC-Ka/barttin and CLC-Kb/barttin channels seems to be absent while the blocking efficacy of niflumic acid and benzofuran derivatives observed in oocytes is preserved. The NFA block does not seem to involve the accessory subunit barttin on CLC-K1 channels. In addition, the sensitivity of CLC-Ks to external Ca(2+) is reduced in HEK293 cells. Based on our findings, we propose that mammalian cell lines are a suitable expression system for the pharmacological profiling of CLC-Ks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/131530
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact