Sex hormonal variations have been shown to affect functional cerebral asymmetries in cognitive domains, contributing to sex-related differences in functional cerebral organization. The aim of this study was to investigate spatial attention by means of a bisection line test and computer-supported attention task during the menstrual cycle in healthy women compared to men, in basal condition and under Transcranial Direct Current Stimulation (TDCS) of the left parietal cortex. Women were studied during the menses, follicular and luteal phases, ascertained by transvaginal ultrasounds. In basal conditions, women showed a clear deviation toward the right in the bisection line test during the menstrual phase, similarly to men. The midpoint recognition in the computer-supported attention task was not influenced by the menstrual cycle for women, while men showed a significant increase in errors toward the left side. The anodal activation of the left parietal cortex did not affect the line bisection task, while in men it reduced the total amount of errors in midpoint recognition observed in the computer supported attention task. The hand-use effect demonstrated by the bisection-line test could be influenced by estrogen fluctuations, while the right hemisphere prevalence in spatial attention appears to be gender-related and scarcely influenced by the menstrual cycle. The left parietal cortex seems to exert a scarce effect on hand-use effect, while its activation is able to revert sex related right hemisphere supremacy.

Sex hormonal variations have been shown to affect functional cerebral asymmetries in cognitive domains, contributing to sex-related differences in functional cerebral organization.The aim of this study was to investigate spatial attention by means of a bisection line test and computer-supported attention task during the menstrual cycle in healthy women compared to men, in basal condition and under Transcranial Direct Current Stimulation (TDCS) of the left parietal cortex. Women were studied during the menses, follicular and luteal phases, ascertained by transvaginal ultrasounds. In basal conditions, women showed a clear deviation toward the right in the bisection line test during the menstrual phase, similarly to men. The midpoint recognition in the computer-supported attention task was not influenced by the menstrual cycle for women, while men showed a significant increase in errors toward the left side. The anodal activation of the left parietal cortex did not affect the line bisection task, while in men it reduced the total amount of errors in midpoint recognition observed in the computer supported attention task. The hand-use effect demonstrated by the bisection-line test could be influenced by estrogen fluctuations, while the right hemisphere prevalence in spatial attention appears to be gender-related and scarcely influenced by the menstrual cycle. The left parietal cortex seems to exert a scarce effect on hand-use effect, while its activation is able to revert sex related right hemisphere supremacy. © 2014 .

Effects of anodal TDCS stimulation of left parietal cortex on visual spatial attention tasks in men and women across menstrual cycle.

DE TOMMASO, Marina;LUCCHESE, VALERIA;DELUSSI, MARIANNA;QUATTROMINI, PAOLA;BETTOCCHI, Stefano;PINTO, Vincenzo;LANCIONI, Giulio;LIVREA, Paolo;CICINELLI, Ettore
2014-01-01

Abstract

Sex hormonal variations have been shown to affect functional cerebral asymmetries in cognitive domains, contributing to sex-related differences in functional cerebral organization. The aim of this study was to investigate spatial attention by means of a bisection line test and computer-supported attention task during the menstrual cycle in healthy women compared to men, in basal condition and under Transcranial Direct Current Stimulation (TDCS) of the left parietal cortex. Women were studied during the menses, follicular and luteal phases, ascertained by transvaginal ultrasounds. In basal conditions, women showed a clear deviation toward the right in the bisection line test during the menstrual phase, similarly to men. The midpoint recognition in the computer-supported attention task was not influenced by the menstrual cycle for women, while men showed a significant increase in errors toward the left side. The anodal activation of the left parietal cortex did not affect the line bisection task, while in men it reduced the total amount of errors in midpoint recognition observed in the computer supported attention task. The hand-use effect demonstrated by the bisection-line test could be influenced by estrogen fluctuations, while the right hemisphere prevalence in spatial attention appears to be gender-related and scarcely influenced by the menstrual cycle. The left parietal cortex seems to exert a scarce effect on hand-use effect, while its activation is able to revert sex related right hemisphere supremacy.
Sex hormonal variations have been shown to affect functional cerebral asymmetries in cognitive domains, contributing to sex-related differences in functional cerebral organization.The aim of this study was to investigate spatial attention by means of a bisection line test and computer-supported attention task during the menstrual cycle in healthy women compared to men, in basal condition and under Transcranial Direct Current Stimulation (TDCS) of the left parietal cortex. Women were studied during the menses, follicular and luteal phases, ascertained by transvaginal ultrasounds. In basal conditions, women showed a clear deviation toward the right in the bisection line test during the menstrual phase, similarly to men. The midpoint recognition in the computer-supported attention task was not influenced by the menstrual cycle for women, while men showed a significant increase in errors toward the left side. The anodal activation of the left parietal cortex did not affect the line bisection task, while in men it reduced the total amount of errors in midpoint recognition observed in the computer supported attention task. The hand-use effect demonstrated by the bisection-line test could be influenced by estrogen fluctuations, while the right hemisphere prevalence in spatial attention appears to be gender-related and scarcely influenced by the menstrual cycle. The left parietal cortex seems to exert a scarce effect on hand-use effect, while its activation is able to revert sex related right hemisphere supremacy. © 2014 .
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/131139
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact