Phosphate and oxoglutarate carriers transport phosphate and oxoglutarate across the inner membranes of mitochondria in exchange for OH- and malate, respectively. Both carriers belong to the mitochondrial carrier protein family, characterized by a tripartite structure made up of related sequences about 100 amino acids in length. The results obtained on the topology of the phosphate and oxoglutarate carriers are consistent with the six alpha-helix model proposed by Saraste and Walker. In both carriers the N- and C-terminal regions are exposed toward the cytosol. In addition, the oxoglutarate carrier has been shown to be a dimer by means of crosslinking studies. The bovine and human genes coding for the oxoglutarate carrier are split into eight and six exons, respectively, and five introns are found to the same position in both genes. The bovine and human phosphate carrier genes have the same organization with nine exons separated by eight introns at exactly the same positions. The phosphate carrier of mammalian mitochondria is synthesized with a cleavable presequence, in contrast to the oxoglutarate carrier and the other members of the mitochondrial carrier family. The precursor of the phosphate carrier is efficiently imported, proteolytically processed, and correctly assembled in isolated mitochondria. The presequence-deficient phosphate carrier is imported with an efficiency of about 50% as compared with the precursor of the phosphate carrier and is correctly assembled, demonstrating that the mature portion of the phosphate carrier contains sufficient information for import and assembly into mitochondria

Transmembrane topology, genes, and biogenesis of the mitochondrial phosphate and oxoglutarate carriers

FIERMONTE, Giuseppe;IACOBAZZI, Vito;
1993-01-01

Abstract

Phosphate and oxoglutarate carriers transport phosphate and oxoglutarate across the inner membranes of mitochondria in exchange for OH- and malate, respectively. Both carriers belong to the mitochondrial carrier protein family, characterized by a tripartite structure made up of related sequences about 100 amino acids in length. The results obtained on the topology of the phosphate and oxoglutarate carriers are consistent with the six alpha-helix model proposed by Saraste and Walker. In both carriers the N- and C-terminal regions are exposed toward the cytosol. In addition, the oxoglutarate carrier has been shown to be a dimer by means of crosslinking studies. The bovine and human genes coding for the oxoglutarate carrier are split into eight and six exons, respectively, and five introns are found to the same position in both genes. The bovine and human phosphate carrier genes have the same organization with nine exons separated by eight introns at exactly the same positions. The phosphate carrier of mammalian mitochondria is synthesized with a cleavable presequence, in contrast to the oxoglutarate carrier and the other members of the mitochondrial carrier family. The precursor of the phosphate carrier is efficiently imported, proteolytically processed, and correctly assembled in isolated mitochondria. The presequence-deficient phosphate carrier is imported with an efficiency of about 50% as compared with the precursor of the phosphate carrier and is correctly assembled, demonstrating that the mature portion of the phosphate carrier contains sufficient information for import and assembly into mitochondria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/130862
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 47
social impact