Resveratrol is a natural phytoalexin present in a variety of plant species, such as grapes and red wine, that is well known for its anti-inflammatory effects. In addition, a cancer chemotherapeutic activity of resveratrol has been described. Here we evaluated the effect of resveratrol on COX-2 and prostaglandin E 2 production in human intestinal cells Caco-2 cells treated with lipopolysaccharide (LPS). Resveratrol concentration-dependently inhibited the expression of COX-2 mRNA in the LPS-treated cells, as well as protein expression, resulting in a decreased production of PGE 2. In order to investigate the mechanisms through which resveratrol exhibited these anti-inflammatory effects, we examined the activation of IκB in LPS-stimulated intestinal cells. Results demonstrated that resveratrol inhibited the translocation of NF-κB p65 subunits from the cytosol to the nucleus, which correlated with its inhibitory effects on IκBα phosphorylation and degradation. These results suggest that the down-regulation of COX-2 and PGE 2 by resveratrol may be related to NF-κB inhibition through the negative regulation of IKK phosphorylation in intestinal cells.
Modulation of NF-κB activation by resveratrol in LPS treated human intestinal cells results in downregulation of PGE(2) production and COX-2 expression.
CIANCIULLI, ANTONIA;CALVELLO, Rosa;PANARO, Maria Antonietta;
2012-01-01
Abstract
Resveratrol is a natural phytoalexin present in a variety of plant species, such as grapes and red wine, that is well known for its anti-inflammatory effects. In addition, a cancer chemotherapeutic activity of resveratrol has been described. Here we evaluated the effect of resveratrol on COX-2 and prostaglandin E 2 production in human intestinal cells Caco-2 cells treated with lipopolysaccharide (LPS). Resveratrol concentration-dependently inhibited the expression of COX-2 mRNA in the LPS-treated cells, as well as protein expression, resulting in a decreased production of PGE 2. In order to investigate the mechanisms through which resveratrol exhibited these anti-inflammatory effects, we examined the activation of IκB in LPS-stimulated intestinal cells. Results demonstrated that resveratrol inhibited the translocation of NF-κB p65 subunits from the cytosol to the nucleus, which correlated with its inhibitory effects on IκBα phosphorylation and degradation. These results suggest that the down-regulation of COX-2 and PGE 2 by resveratrol may be related to NF-κB inhibition through the negative regulation of IKK phosphorylation in intestinal cells.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.