We analyze simple dynamical network models which describe the limited capacity of nodes to process the input information. For a proper range of their parameters, the information flow pattern in these models is characterized by exponential distribution of the incoming information and a fat-tailed distribution of the outgoing information, as a signature of the law of diminishing marginal returns. We apply this analysis to effective connectivity networks from human EEG signals, obtained by Granger Causality, which has recently been given an interpretation in the framework of information theory. From the distributions of the incoming versus the outgoing values of the information flow it is evident that the incoming information is exponentially distributed whilst the outgoing information shows a fat tail. This suggests that overall brain effective connectivity networks may also be considered in the light of the law of diminishing marginal returns. Interestingly, this pattern is reproduced locally but with a clear modulation: a topographic analysis has also been made considering the distribution of incoming and outgoing values at each electrode, suggesting a functional role for this phenomenon.

Information Flow in Networks and the Law of Diminishing Marginal Returns: Evidence from Modeling and Human Electroencephalographic Recordings

ANGELINI, Leonardo;STRAMAGLIA, Sebastiano
2012-01-01

Abstract

We analyze simple dynamical network models which describe the limited capacity of nodes to process the input information. For a proper range of their parameters, the information flow pattern in these models is characterized by exponential distribution of the incoming information and a fat-tailed distribution of the outgoing information, as a signature of the law of diminishing marginal returns. We apply this analysis to effective connectivity networks from human EEG signals, obtained by Granger Causality, which has recently been given an interpretation in the framework of information theory. From the distributions of the incoming versus the outgoing values of the information flow it is evident that the incoming information is exponentially distributed whilst the outgoing information shows a fat tail. This suggests that overall brain effective connectivity networks may also be considered in the light of the law of diminishing marginal returns. Interestingly, this pattern is reproduced locally but with a clear modulation: a topographic analysis has also been made considering the distribution of incoming and outgoing values at each electrode, suggesting a functional role for this phenomenon.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/130395
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact