Background: The kidney-specific NKCC cotransporter isoform NKCC2 is involved in the Na+ reabsorption in the Thich Ascending Limb (TAL) cells and in the regulation of body fluid volume. In contrast, the isoform NKCC1 represents the major pathway for Cl- entry in endothelial cells, playing a crucial role in cell volume regulation and vascular tone. Importantly, both NKCC isoforms are involved in the regulation of blood pressure and represent important potential drug targets for the treatment of hypertension. Results: Taking advantage of an existing Thallium (Tl+)-based kit, we set up a Tl+ influx-based fluorescent assay, that can accurately and rapidly measure NKCC transporter activity in adherent epithelial cells using the high-throughput Flex station device. We assessed the feasibility of this assay in the renal epithelial LLC-PK1 cells stably transfected with a previously characterized chimeric NKCC2 construct (c-NKCC2). We demonstrated that the assay is highly reproducible, offers high temporal resolution of NKCC-mediated ion flux profiles and, importantly, being a continuous assay, it offers improved sensitivity over previous endpoint NKCC functional assays. Conclusions: So far the screening of NKCC transporters activity has been done by 86Rb+ influx assays. Indeed, a fluorescence-based high-throughput screening method for testing NKCC inhibitors would be extremely useful in the development and characterization of new anti-hypertensive drugs.

High-throughput fluorescent-based NKCC functional assay in adherent epithelial cells.

PROCINO, Giuseppe;SVELTO, Maria
2013-01-01

Abstract

Background: The kidney-specific NKCC cotransporter isoform NKCC2 is involved in the Na+ reabsorption in the Thich Ascending Limb (TAL) cells and in the regulation of body fluid volume. In contrast, the isoform NKCC1 represents the major pathway for Cl- entry in endothelial cells, playing a crucial role in cell volume regulation and vascular tone. Importantly, both NKCC isoforms are involved in the regulation of blood pressure and represent important potential drug targets for the treatment of hypertension. Results: Taking advantage of an existing Thallium (Tl+)-based kit, we set up a Tl+ influx-based fluorescent assay, that can accurately and rapidly measure NKCC transporter activity in adherent epithelial cells using the high-throughput Flex station device. We assessed the feasibility of this assay in the renal epithelial LLC-PK1 cells stably transfected with a previously characterized chimeric NKCC2 construct (c-NKCC2). We demonstrated that the assay is highly reproducible, offers high temporal resolution of NKCC-mediated ion flux profiles and, importantly, being a continuous assay, it offers improved sensitivity over previous endpoint NKCC functional assays. Conclusions: So far the screening of NKCC transporters activity has been done by 86Rb+ influx assays. Indeed, a fluorescence-based high-throughput screening method for testing NKCC inhibitors would be extremely useful in the development and characterization of new anti-hypertensive drugs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/129529
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact