OBJECTIVE: The intrarenal renin-angiotensin system (RAS) activation plays a pivotal role in immunoglobulin A nephropathy (IgAN) pathogenesis, which is still largely undefined. Recently, vasopressin (AVP) has been advocated to contribute to the genesis and progression of chronic kidney diseases (CKD) directly, and indirectly, via RAS activation. Our aim is to explore the intrarenal activity of AVP, its relationship with RAS activity, as well as its modulation by therapies in IgAN. DESIGN: In this observational study, we measured plasma copeptin, a surrogate marker of AVP, the urine excretion of aquaporin 2 (AQP2), a protein reflecting renal AVP action, and angiotensinogen (AGT), a parameter of renal RAS activation, and their relationship with renal function in 44 IgAN patients at the time of renal biopsy, without any drug therapy, and after 6-month treatment with ACEi or steroid+ACEi. Twenty-one patients with other CKD and 40 healthy subjects were recruited as controls. METHODS: ELISAs were used to measure all variables of interest. RESULTS: At baseline, IgAN patients showed higher urinary levels of AQP2, compared with controls and patients with other CKD. Urinary AQP2 and AGT levels strongly correlated with the presence of arterial hypertension. Steroids+ACEi caused the decrease of all the variables examined. The fall of urinary AQP2 and AGT following drug treatments was associated with the decrease of daily proteinuria. CONCLUSION: Our findings would support the involvement of AVP-AQP2 axis, interacting with the RAS, in the progression of IgAN and candidate AQP2 as a possible novel marker of the disease.

Objective: The intrarenal renin–angiotensin system (RAS) activation plays a pivotal role in immunoglobulin A nephropathy (IgAN) pathogenesis, which is still largely undefined. Recently, vasopressin (AVP) has been advocated to contribute to the genesis and progression of chronic kidney diseases (CKD) directly, and indirectly, via RAS activation. Our aim is to explore the intrarenal activity of AVP, its relationship with RAS activity, as well as its modulation by therapies in IgAN. Design: In this observational study, we measured plasma copeptin, a surrogate marker of AVP, the urine excretion of aquaporin 2 (AQP2), a protein reflecting renal AVP action, and angiotensinogen (AGT), a parameter of renal RAS activation, and their relationshipwith renal function in 44 IgAN patients at the time of renal biopsy, without any drug therapy, and after 6-month treatment with ACEi or steroidCACEi. Twenty-one patients with other CKD and 40 healthy subjects were recruited as controls. Methods: ELISAs were used to measure all variables of interest. Results: At baseline, IgAN patients showed higher urinary levels of AQP2, compared with controls and patients with other CKD. Urinary AQP2 and AGT levels strongly correlated with the presence of arterial hypertension. SteroidsCACEi caused the decrease of all the variables examined. The fall of urinary AQP2 and AGT following drug treatments was associated with the decrease of daily proteinuria. Conclusion: Our findings would support the involvement of AVP–AQP2 axis, interacting with the RAS, in the progression of IgAN and candidate AQP2 as a possible novel marker of the disease.

Altered urinary excretion of aquaporin 2 in IgA nephropathy

TAMMA, GRAZIA;SVELTO, Maria;VALENTI, Giovanna;GESUALDO, Loreto;
2011-01-01

Abstract

Objective: The intrarenal renin–angiotensin system (RAS) activation plays a pivotal role in immunoglobulin A nephropathy (IgAN) pathogenesis, which is still largely undefined. Recently, vasopressin (AVP) has been advocated to contribute to the genesis and progression of chronic kidney diseases (CKD) directly, and indirectly, via RAS activation. Our aim is to explore the intrarenal activity of AVP, its relationship with RAS activity, as well as its modulation by therapies in IgAN. Design: In this observational study, we measured plasma copeptin, a surrogate marker of AVP, the urine excretion of aquaporin 2 (AQP2), a protein reflecting renal AVP action, and angiotensinogen (AGT), a parameter of renal RAS activation, and their relationshipwith renal function in 44 IgAN patients at the time of renal biopsy, without any drug therapy, and after 6-month treatment with ACEi or steroidCACEi. Twenty-one patients with other CKD and 40 healthy subjects were recruited as controls. Methods: ELISAs were used to measure all variables of interest. Results: At baseline, IgAN patients showed higher urinary levels of AQP2, compared with controls and patients with other CKD. Urinary AQP2 and AGT levels strongly correlated with the presence of arterial hypertension. SteroidsCACEi caused the decrease of all the variables examined. The fall of urinary AQP2 and AGT following drug treatments was associated with the decrease of daily proteinuria. Conclusion: Our findings would support the involvement of AVP–AQP2 axis, interacting with the RAS, in the progression of IgAN and candidate AQP2 as a possible novel marker of the disease.
2011
OBJECTIVE: The intrarenal renin-angiotensin system (RAS) activation plays a pivotal role in immunoglobulin A nephropathy (IgAN) pathogenesis, which is still largely undefined. Recently, vasopressin (AVP) has been advocated to contribute to the genesis and progression of chronic kidney diseases (CKD) directly, and indirectly, via RAS activation. Our aim is to explore the intrarenal activity of AVP, its relationship with RAS activity, as well as its modulation by therapies in IgAN. DESIGN: In this observational study, we measured plasma copeptin, a surrogate marker of AVP, the urine excretion of aquaporin 2 (AQP2), a protein reflecting renal AVP action, and angiotensinogen (AGT), a parameter of renal RAS activation, and their relationship with renal function in 44 IgAN patients at the time of renal biopsy, without any drug therapy, and after 6-month treatment with ACEi or steroid+ACEi. Twenty-one patients with other CKD and 40 healthy subjects were recruited as controls. METHODS: ELISAs were used to measure all variables of interest. RESULTS: At baseline, IgAN patients showed higher urinary levels of AQP2, compared with controls and patients with other CKD. Urinary AQP2 and AGT levels strongly correlated with the presence of arterial hypertension. Steroids+ACEi caused the decrease of all the variables examined. The fall of urinary AQP2 and AGT following drug treatments was associated with the decrease of daily proteinuria. CONCLUSION: Our findings would support the involvement of AVP-AQP2 axis, interacting with the RAS, in the progression of IgAN and candidate AQP2 as a possible novel marker of the disease.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/128292
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact