In the framework of a project aiming to phytoremediate heavy metal contaminated soils in the Apulia region, Southern Italy, a series of greenhouse experiments followed by field trials were performed in order to optimize heavy metal phytoextraction by Brassica napus. The effects of root colonization by Bacillus licheniformis BLMB1 and of addition of municipal solid waste (MSW) composts on the capacity of B. napus to tolerate and accumulate Cr, Cu, Pb and Zn were evaluated. B. napus was able to accumulate high amount of metals in greenhouse conditions, whereas it grew with difficulty or not at all in the open field, and metal accumulation in plant fractions was relatively low. The accumulation of metals in the plant fractions was in the order: Cr>Zn>Cu>Pb. The presence of either compost or B. licheniformis BLMB1 strain enhanced metal accumulation, Cr in particular, in the experimental conditions used. This effect can be useful in the phytoextraction of Cr from contaminated soils. (C) 2010 Elsevier B.V. All rights reserved.
Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy
BRUNETTI, Gennaro;NIGRO, Franco;
2011-01-01
Abstract
In the framework of a project aiming to phytoremediate heavy metal contaminated soils in the Apulia region, Southern Italy, a series of greenhouse experiments followed by field trials were performed in order to optimize heavy metal phytoextraction by Brassica napus. The effects of root colonization by Bacillus licheniformis BLMB1 and of addition of municipal solid waste (MSW) composts on the capacity of B. napus to tolerate and accumulate Cr, Cu, Pb and Zn were evaluated. B. napus was able to accumulate high amount of metals in greenhouse conditions, whereas it grew with difficulty or not at all in the open field, and metal accumulation in plant fractions was relatively low. The accumulation of metals in the plant fractions was in the order: Cr>Zn>Cu>Pb. The presence of either compost or B. licheniformis BLMB1 strain enhanced metal accumulation, Cr in particular, in the experimental conditions used. This effect can be useful in the phytoextraction of Cr from contaminated soils. (C) 2010 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.