Motivations: Physiological systems are ruled by mechanisms operating across multiple temporal scales. A recently proposed approach, multiscale entropy analysis, measures the complexity at different time scales and has been successfully applied to long term electrocardiographic recordings. The purpose of this work is to show the applicability of this methodology, rooted on statistical physics ideas, to short term time series of simultaneously acquired samples of heart rate, blood pressure and lung volume, from healthy subjects and from subjects with chronic heart failure. In the same spirit, we also propose a multiscale approach, to evaluate interactions between time series, by performing a multivariate autoregressive (AR) modeling of the coarse grained time series. Methods: We apply the multiscale entropy analysis to our data set of short term recordings. Concerning the multiscale version of the multivariate AR approach, we apply it to the four dimensional time series so as to detect scale dependent patterns of interactions between the physiological quantities.
Multiscale analysis of short term heart beat interval, arterial blood pressure, and instantaneous lung volume time series
ANGELINI, Leonardo;STRAMAGLIA, Sebastiano;
2007-01-01
Abstract
Motivations: Physiological systems are ruled by mechanisms operating across multiple temporal scales. A recently proposed approach, multiscale entropy analysis, measures the complexity at different time scales and has been successfully applied to long term electrocardiographic recordings. The purpose of this work is to show the applicability of this methodology, rooted on statistical physics ideas, to short term time series of simultaneously acquired samples of heart rate, blood pressure and lung volume, from healthy subjects and from subjects with chronic heart failure. In the same spirit, we also propose a multiscale approach, to evaluate interactions between time series, by performing a multivariate autoregressive (AR) modeling of the coarse grained time series. Methods: We apply the multiscale entropy analysis to our data set of short term recordings. Concerning the multiscale version of the multivariate AR approach, we apply it to the four dimensional time series so as to detect scale dependent patterns of interactions between the physiological quantities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.