Nowadays, building ontologies is a time consuming task since they are mainly manually built. This makes hard the full realization of the Semantic Web view. In order to overcome this issue, machine learning techniques, and specifically inductive learning methods, could be fruitfully exploited for learning models from existing Web data. In this paper we survey methods for (semi-)automatically building and enriching ontologies from existing sources of information such as Linked Data, tagged data, social networks, ontologies. In this way, a large amount of ontologies could be quickly available and possibly only refined by the knowledge engineers. Furthermore, inductive incremental learning techniques could be adopted to perform reasoning at large scale, for which the deductive approach has showed its limitations. Indeed, incremental methods allow to learn models from samples of data and then to refine/enrich the model when new (samples of) data are available. If on one hand this means to abandon sound and complete reasoning procedures for the advantage of uncertain conclusions, on the other hand this could allow to reason on the entire Web. Besides, the adoption of inductive learning methods could make also possible to dial with the intrinsic uncertainty characterizing the Web, that, for its nature, could have incomplete and/or contradictory information.

Inductive Learning for the Semantic Web: What does it buy?

D'AMATO, CLAUDIA;FANIZZI, Nicola;ESPOSITO, Floriana
2010-01-01

Abstract

Nowadays, building ontologies is a time consuming task since they are mainly manually built. This makes hard the full realization of the Semantic Web view. In order to overcome this issue, machine learning techniques, and specifically inductive learning methods, could be fruitfully exploited for learning models from existing Web data. In this paper we survey methods for (semi-)automatically building and enriching ontologies from existing sources of information such as Linked Data, tagged data, social networks, ontologies. In this way, a large amount of ontologies could be quickly available and possibly only refined by the knowledge engineers. Furthermore, inductive incremental learning techniques could be adopted to perform reasoning at large scale, for which the deductive approach has showed its limitations. Indeed, incremental methods allow to learn models from samples of data and then to refine/enrich the model when new (samples of) data are available. If on one hand this means to abandon sound and complete reasoning procedures for the advantage of uncertain conclusions, on the other hand this could allow to reason on the entire Web. Besides, the adoption of inductive learning methods could make also possible to dial with the intrinsic uncertainty characterizing the Web, that, for its nature, could have incomplete and/or contradictory information.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/127892
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 28
social impact