N-formyl-methionyl-leucyl-phenylalanine (fMLP) is a major chemotactic factor produced by Escherichia coli and other Gram-negative bacteria. In avian models the fMLP effects and the possible expression of FPRs have been poorly investigated. This report demonstrates that fMLP stimulation in vitro is able to elicit significant cellular responses from 10-day chick embryo nerve cells. Cell treatment with 10(-7) M fMLP at 37 degrees C induces a dramatic increase of nitric oxide (NO) production, after 24, 48, and 72 h, respectively. After 72 h of treatment with 10(-7) M fMLP the maximum nuclear translocation of the NF-kB complex protein p65 is visible, corresponding to the greatest NO production. In this context, 72 h of fMLP stimulation lead to a marked expression of the antiapoptotic protein Bcl-2, involved in cell survival. This suggests that activation of the NF-kB complex plays a protective role in chick neuronal cells treated with fMLP, confirmed by the significant neuronal cells degeneration observed after NF-kB inhibition with the specific inhibitor, TPCK. Overall, these data suggest a possible protective mechanism displayed by neurons against toxic molecules, like NO, released after cell exposure to bacterial products.

f-Met-Leu-Phe stimulates nitric oxide production in chick embryo neurons: the role of NF-kB

CIANCIULLI, ANTONIA;PANARO, Maria Antonietta;CALVELLO, Rosa;
2009-01-01

Abstract

N-formyl-methionyl-leucyl-phenylalanine (fMLP) is a major chemotactic factor produced by Escherichia coli and other Gram-negative bacteria. In avian models the fMLP effects and the possible expression of FPRs have been poorly investigated. This report demonstrates that fMLP stimulation in vitro is able to elicit significant cellular responses from 10-day chick embryo nerve cells. Cell treatment with 10(-7) M fMLP at 37 degrees C induces a dramatic increase of nitric oxide (NO) production, after 24, 48, and 72 h, respectively. After 72 h of treatment with 10(-7) M fMLP the maximum nuclear translocation of the NF-kB complex protein p65 is visible, corresponding to the greatest NO production. In this context, 72 h of fMLP stimulation lead to a marked expression of the antiapoptotic protein Bcl-2, involved in cell survival. This suggests that activation of the NF-kB complex plays a protective role in chick neuronal cells treated with fMLP, confirmed by the significant neuronal cells degeneration observed after NF-kB inhibition with the specific inhibitor, TPCK. Overall, these data suggest a possible protective mechanism displayed by neurons against toxic molecules, like NO, released after cell exposure to bacterial products.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/127664
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact