A general model is proposed for a Vertical Cavity Surface Emitting Laser (VCSEL) with medium aspect ratio whose field profile can be described by a limited set of Gauss-Laguerre modes. The model is adapted to self-mixing schemes by supposing that the output beam is reinjected into the laser cavity by an external target mirror. We show that the self-mixing interferometric signal exhibits features peculiar of the spatial distribution of the emitted field and the target-reflected field and we suggest an applicative scheme that could be exploited for experimental displacement measurements. In particular, regimes of transverse mode-locking are found, where we propose an operational scheme for a sensor that can be used to simultaneously measure independent components of the target displacement like target translations along the optical axis (longitudinal axis) and target rotations in a plane orthogonal to the optical axis (transverse plane). (C) 2012 Optical Society of America
Self-mixing in multi-transverse mode semiconductor lasers: model and potential application to multi-parametric sensing
DABBICCO, Maurizio;SCAMARCIO, Gaetano
2012-01-01
Abstract
A general model is proposed for a Vertical Cavity Surface Emitting Laser (VCSEL) with medium aspect ratio whose field profile can be described by a limited set of Gauss-Laguerre modes. The model is adapted to self-mixing schemes by supposing that the output beam is reinjected into the laser cavity by an external target mirror. We show that the self-mixing interferometric signal exhibits features peculiar of the spatial distribution of the emitted field and the target-reflected field and we suggest an applicative scheme that could be exploited for experimental displacement measurements. In particular, regimes of transverse mode-locking are found, where we propose an operational scheme for a sensor that can be used to simultaneously measure independent components of the target displacement like target translations along the optical axis (longitudinal axis) and target rotations in a plane orthogonal to the optical axis (transverse plane). (C) 2012 Optical Society of AmericaI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.