The paper focuses on the task of approximate classification of semantically annotated individual resources in ontological knowledge bases. The method is based on classification models built through kernel methods, a well-known class of effective statistical learning algorithms. Kernel functions encode a notion of similarity among elements of some input space. The definition of a family of parametric language- independent kernel functions for individuals occurring in an ontology allows the application of these statistical learning methods on Semantic Web knowledge bases. The classification models induced by kernel methods offer an alternative way to classify individuals with respect to the typical exact and approximate deductive reasoning procedures. The proposed statistical setting enables further inductive approaches to a variety of other tasks that can better cope with the inherent incompleteness of the knowledge bases in the Semantic Web and with their potential incoherence due to their distributed nature. The effectiveness of the proposed method is empirically proved through experiments on the task of approximate classification with real ontologies collected from standard repositories.

Induction of robust classifiers for web ontologies through kernel machines

FANIZZI, Nicola;D'AMATO, CLAUDIA;ESPOSITO, Floriana
2012-01-01

Abstract

The paper focuses on the task of approximate classification of semantically annotated individual resources in ontological knowledge bases. The method is based on classification models built through kernel methods, a well-known class of effective statistical learning algorithms. Kernel functions encode a notion of similarity among elements of some input space. The definition of a family of parametric language- independent kernel functions for individuals occurring in an ontology allows the application of these statistical learning methods on Semantic Web knowledge bases. The classification models induced by kernel methods offer an alternative way to classify individuals with respect to the typical exact and approximate deductive reasoning procedures. The proposed statistical setting enables further inductive approaches to a variety of other tasks that can better cope with the inherent incompleteness of the knowledge bases in the Semantic Web and with their potential incoherence due to their distributed nature. The effectiveness of the proposed method is empirically proved through experiments on the task of approximate classification with real ontologies collected from standard repositories.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/127336
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 10
social impact