n this study, we address the activation profile of the gene encoding the mouse axonal glycoprotein F3/Contactin. Promoter sequences previously characterized in vitro are used to drive an Enhanced Green Fluorescent Protein reporter in transgenic mice. In developing cerebellum, differential transgene expression occurs within distinct cell populations. At P0 the transgene is activated in postmitotic granule neurons undergoing radial migration, a sharp upregulation occurring at P6–P8, with a gradual decline from this stage onward. In Purkinje cells, promoter activation, first detected at P3, peaks at around P6 and is fully downregulated by P16. The transgene is also expressed in Ng2- and O4-positive cells, mostly at the end of the first postnatal week, suggesting correlation with early oligodendrocyte differentiation. These data indicate that the complex organization of the regulatory region of the F3/Contactin gene is necessary for directing its articulated expression in different neural cells types and for its developmental function.

Activation profile of the F3/Contactin gene in the developing mouse cerebellum

GENNARINI, Gianfranco;BIZZOCA, ANTONELLA;CORSI, Patrizia;
2006-01-01

Abstract

n this study, we address the activation profile of the gene encoding the mouse axonal glycoprotein F3/Contactin. Promoter sequences previously characterized in vitro are used to drive an Enhanced Green Fluorescent Protein reporter in transgenic mice. In developing cerebellum, differential transgene expression occurs within distinct cell populations. At P0 the transgene is activated in postmitotic granule neurons undergoing radial migration, a sharp upregulation occurring at P6–P8, with a gradual decline from this stage onward. In Purkinje cells, promoter activation, first detected at P3, peaks at around P6 and is fully downregulated by P16. The transgene is also expressed in Ng2- and O4-positive cells, mostly at the end of the first postnatal week, suggesting correlation with early oligodendrocyte differentiation. These data indicate that the complex organization of the regulatory region of the F3/Contactin gene is necessary for directing its articulated expression in different neural cells types and for its developmental function.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/127267
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact