A totally innovative electrolyte-gated field effect transistor, embedding a phospholipid film at the interface between the organic semiconductor and the gating solution, is described. The electronic properties of OFETs including a phospholipid film are studied in both pure water and in an electrolyte solution and compared to those of an OFET with the organic semiconductor directly in contact with the gating solution. In addition, to investigate the role of the lipid layers in the charge polarization process and quantify the field-effect mobility, impedance spectroscopy was employed. The results indicate that the integration of the biological film minimizes the penetration of ions into the organic semiconductor thus leading to a capacitive operational mode as opposed to an electrochemical one. The OFETs operate at low voltages with a field-effect mobility in the 10^-3 cm^2 V^-1 s^-1 range and an on/off current ratio of 10^3. This achievement opens perspectives to the development of FET biosensors potentially capable to operate in direct contact with physiological fluids.

Phospholipid film in electrolyte-gated organic field-effect transistors

MAGLIULO, MARIA;PALAZZO, Gerardo;LIGONZO, Teresa;TORSI, Luisa
2012-01-01

Abstract

A totally innovative electrolyte-gated field effect transistor, embedding a phospholipid film at the interface between the organic semiconductor and the gating solution, is described. The electronic properties of OFETs including a phospholipid film are studied in both pure water and in an electrolyte solution and compared to those of an OFET with the organic semiconductor directly in contact with the gating solution. In addition, to investigate the role of the lipid layers in the charge polarization process and quantify the field-effect mobility, impedance spectroscopy was employed. The results indicate that the integration of the biological film minimizes the penetration of ions into the organic semiconductor thus leading to a capacitive operational mode as opposed to an electrochemical one. The OFETs operate at low voltages with a field-effect mobility in the 10^-3 cm^2 V^-1 s^-1 range and an on/off current ratio of 10^3. This achievement opens perspectives to the development of FET biosensors potentially capable to operate in direct contact with physiological fluids.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/127024
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 53
social impact