In this work, we examine the effects of lipopolysaccharide (LPS) treatment on nerve cells of chick embryo used as a universal avian model. We demonstrate that LPS leads to a dramatic cell loss in primary cultures of both glia and neurons, isolated from chick embryos. Toxic effects appear to be mediated by the Toll-like receptor (TLR)-4 complex, expressed in both glial and neuronal cells, since after TLR-4 silencing by RNA interference experiments LPS-induced cytotoxicity was prevented. The role of nitric oxide in LPS-induced cell damage has also been investigated. These results demonstrate, for the first time in avian nerve cells, the surface expression of TLR-4 and its role as a pattern recognition receptor involved in LPS-induced cell responses in a similar manner to that observed in mammals.
First identification of Toll-like receptor-4 in avian brain: evolution of lipopolysaccharide recognition and inflammation-dependent responses
CIANCIULLI, ANTONIA;CALVELLO, Rosa;PANARO, Maria Antonietta;
2011-01-01
Abstract
In this work, we examine the effects of lipopolysaccharide (LPS) treatment on nerve cells of chick embryo used as a universal avian model. We demonstrate that LPS leads to a dramatic cell loss in primary cultures of both glia and neurons, isolated from chick embryos. Toxic effects appear to be mediated by the Toll-like receptor (TLR)-4 complex, expressed in both glial and neuronal cells, since after TLR-4 silencing by RNA interference experiments LPS-induced cytotoxicity was prevented. The role of nitric oxide in LPS-induced cell damage has also been investigated. These results demonstrate, for the first time in avian nerve cells, the surface expression of TLR-4 and its role as a pattern recognition receptor involved in LPS-induced cell responses in a similar manner to that observed in mammals.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.