INTRODUCTION: In hepatitis C virus (HCV)-related mixed cryoglobulinemia (MCG), the nonenveloped HCV core protein (HCV-Cp) is a constituent of the characteristic cold-precipitating immune complexes (ICs). A possible correlation between HCV-Cp, virologic, laboratory, and clinical parameters in both untreated MCG patients and those undergoing specific treatment was explored. METHODS: HCV-Cp was quantified by a fully automated immune assay. Correlations between HCV-Cp and HCV RNA, cryocrit, and virus genotype (gt) were investigated in 102 chronically HCV-infected MCG patients. RESULTS: HCV-Cp concentrations strongly correlated with HCV RNA levels in baseline samples. An average ratio of 1,425 IU and 12,850 IU HCV RNA per picogram HCV-Cp was estimated in HCV gt-1 and gt-2 patients, respectively. This equation allowed us to estimate that, on average, HCV-Cp was associated with the viral genome in only 3.4% of the former and in 35% of the latter group of patients. The direct relation between HCV-Cp and the cryocrit level suggests that the protein directly influences the amount of cryoprecipitate. Although the therapy with rituximab (RTX) as a single agent resulted in the enhancement of HCV-Cp levels, in patients treated with RTX in combination with a specific antiviral therapy (pegylated interferon-α plus ribavirin), the prompt and effective clearance of HCV-Cp was documented. CONCLUSIONS: Our data provide evidence that HCV-Cp has a direct effect on the cold-precipitation process in a virus genotype-dependence in HCV-related MCG patients.
Assessment of total Hepatitis C virus (HCV) core protein in HCV-related mixed cryoglobulinemia.
RUSSI, SABINO;SANSONNO, Domenico Ettore;MARIGGIO', Maria Addolorata;VINELLA, ANGELA;LAULETTA, GIANFRANCO;
2014-01-01
Abstract
INTRODUCTION: In hepatitis C virus (HCV)-related mixed cryoglobulinemia (MCG), the nonenveloped HCV core protein (HCV-Cp) is a constituent of the characteristic cold-precipitating immune complexes (ICs). A possible correlation between HCV-Cp, virologic, laboratory, and clinical parameters in both untreated MCG patients and those undergoing specific treatment was explored. METHODS: HCV-Cp was quantified by a fully automated immune assay. Correlations between HCV-Cp and HCV RNA, cryocrit, and virus genotype (gt) were investigated in 102 chronically HCV-infected MCG patients. RESULTS: HCV-Cp concentrations strongly correlated with HCV RNA levels in baseline samples. An average ratio of 1,425 IU and 12,850 IU HCV RNA per picogram HCV-Cp was estimated in HCV gt-1 and gt-2 patients, respectively. This equation allowed us to estimate that, on average, HCV-Cp was associated with the viral genome in only 3.4% of the former and in 35% of the latter group of patients. The direct relation between HCV-Cp and the cryocrit level suggests that the protein directly influences the amount of cryoprecipitate. Although the therapy with rituximab (RTX) as a single agent resulted in the enhancement of HCV-Cp levels, in patients treated with RTX in combination with a specific antiviral therapy (pegylated interferon-α plus ribavirin), the prompt and effective clearance of HCV-Cp was documented. CONCLUSIONS: Our data provide evidence that HCV-Cp has a direct effect on the cold-precipitation process in a virus genotype-dependence in HCV-related MCG patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.