In the present work we have analysed the efficiency (P/O ratio) of energy production by oxidative phosphorylation (OXPHOS) in rat brain, liver and heart mitochondria. This study has revealed tissue-specific differences in the mean values of P/O ratios and ATP production rates. A marked dependence of the P/O ratio on the respiration rates has been observed with complex I (NADH:ubiquinone oxidoreductase), but not with complex II (succinate dehydrogenase) respiratory substrates. The physiological impact of the P/O variations with complex I substrates has been further confirmed by extending the analysis to brain mitochondria from three independent groups of animals utilized to study the effects of dietary treatments on the age-related changes of OXPHOS. The general site-specificity of the rate-dependent P/O variability indicates that the decoupling, i.e. decreased coupling between electron transfer and proton pumping, is likely to be mostly due to slip of mitochondrial complex I. These findings suggest an additional mechanism for the pivotal role played by the energy-conserving respiratory complex I in the physiological and adaptive plasticity of mitochondrial OXPHOS.

Control of OXPHOS efficiency by complex I in brain mitochondria

COCCO, Tiziana Maria;VILLANI, Gaetano
2009-01-01

Abstract

In the present work we have analysed the efficiency (P/O ratio) of energy production by oxidative phosphorylation (OXPHOS) in rat brain, liver and heart mitochondria. This study has revealed tissue-specific differences in the mean values of P/O ratios and ATP production rates. A marked dependence of the P/O ratio on the respiration rates has been observed with complex I (NADH:ubiquinone oxidoreductase), but not with complex II (succinate dehydrogenase) respiratory substrates. The physiological impact of the P/O variations with complex I substrates has been further confirmed by extending the analysis to brain mitochondria from three independent groups of animals utilized to study the effects of dietary treatments on the age-related changes of OXPHOS. The general site-specificity of the rate-dependent P/O variability indicates that the decoupling, i.e. decreased coupling between electron transfer and proton pumping, is likely to be mostly due to slip of mitochondrial complex I. These findings suggest an additional mechanism for the pivotal role played by the energy-conserving respiratory complex I in the physiological and adaptive plasticity of mitochondrial OXPHOS.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/125843
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact