The paper proposes a new Empirical Risk Functional as cost function for training neuro-fuzzy classifiers. This cost function, called Approximate Differentiable Empirical Risk Functional (ADERF), provides a differentiable approximation of the misclassification rate so that the Empirical Risk Minimization Principle formulated in Vapnik's Statistical Learning Theory can be applied. Also, based on the proposed ADERF, a learning algorithm is formulated. Experimental results on a number of benchmark classification tasks are provided and comparison to alternative approaches given.
An empirical risk functional to improve learning in a neuro-fuzzy classifier
CASTELLANO, GIOVANNA;FANELLI, Anna Maria;MENCAR, CORRADO
2004-01-01
Abstract
The paper proposes a new Empirical Risk Functional as cost function for training neuro-fuzzy classifiers. This cost function, called Approximate Differentiable Empirical Risk Functional (ADERF), provides a differentiable approximation of the misclassification rate so that the Empirical Risk Minimization Principle formulated in Vapnik's Statistical Learning Theory can be applied. Also, based on the proposed ADERF, a learning algorithm is formulated. Experimental results on a number of benchmark classification tasks are provided and comparison to alternative approaches given.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.