Background. Hepatocytes are polarized epithelial cells with three morphologically and functionally distinct membrane surfaces: the sinusoidal, lateral and canalicular surface domains. These domains differ from each other in the expression of integral proteins, which concur to their polarized functions. We hypothesize that the cholestasis-induced alterations led to partial loss of hepatocyte polarity. An altered expression of membrane proteins may be indicative of functional disorders. Alkaline liver phosphatase (ALP), one of the most representative plasma membrane glycoproteins in hepatocytes, is expressed at the apical (canalicular) pole of the cell. Because the release of ALP protein in the bloodstream is significantly increased in cholestasis, the enzymatic levels of plasma ALP have major relevance in the diagnosis of cholestatic diseases. Here we assess the cholestasis-induced redistribution of membrane glycoproteins to investigate the ALP release. Materials and methods We performed enzymatic histochemistry, immunohistochemistry, lectin histochemistry, immunogold and lectin-and immunoblotting studies. Experimental cholestasis was induced in rats by ligation of common bile duct (BDL). Results The BDL led to altered membrane sialoglycoprotein targeting as well as to ultrastructural and functional disorders. Disarrangement of the microtubular system, thickening of the microfilamentous pericanalicular ectoplasm and disturbance of the vectorial trafficking of membrane glycoprotein containing vesicles were found. Conclusions Altogether, results indicate that the cholestasis-induced partial loss of hepatocyte cell polarity leads to mistranslocation of ALP to the sinusoidal plasma membrane from where the enzyme is then massively released into the bloodstream.

Altered membrane glycoprotein targeting in cholestatic hepatocytes

MASTRODONATO, MARIA;SCILLITANI, Giovanni;GENA P;PORTINCASA, Piero;CALAMITA, Giuseppe;
2010-01-01

Abstract

Background. Hepatocytes are polarized epithelial cells with three morphologically and functionally distinct membrane surfaces: the sinusoidal, lateral and canalicular surface domains. These domains differ from each other in the expression of integral proteins, which concur to their polarized functions. We hypothesize that the cholestasis-induced alterations led to partial loss of hepatocyte polarity. An altered expression of membrane proteins may be indicative of functional disorders. Alkaline liver phosphatase (ALP), one of the most representative plasma membrane glycoproteins in hepatocytes, is expressed at the apical (canalicular) pole of the cell. Because the release of ALP protein in the bloodstream is significantly increased in cholestasis, the enzymatic levels of plasma ALP have major relevance in the diagnosis of cholestatic diseases. Here we assess the cholestasis-induced redistribution of membrane glycoproteins to investigate the ALP release. Materials and methods We performed enzymatic histochemistry, immunohistochemistry, lectin histochemistry, immunogold and lectin-and immunoblotting studies. Experimental cholestasis was induced in rats by ligation of common bile duct (BDL). Results The BDL led to altered membrane sialoglycoprotein targeting as well as to ultrastructural and functional disorders. Disarrangement of the microtubular system, thickening of the microfilamentous pericanalicular ectoplasm and disturbance of the vectorial trafficking of membrane glycoprotein containing vesicles were found. Conclusions Altogether, results indicate that the cholestasis-induced partial loss of hepatocyte cell polarity leads to mistranslocation of ALP to the sinusoidal plasma membrane from where the enzyme is then massively released into the bloodstream.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/118625
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact