First-Order Logic formulæ are a powerful representation formalism characterized by the use of relations, that cause serious computational problems due to the phenomenon of indeterminacy (various portions of one description are possibly mapped in different ways onto another description). Being able to identify the correct corresponding parts of two descriptions would help to tackle the problem: hence, the need for a framework for the comparison and similarity assessment. This could have many applications in Artificial Intelligence: guiding subsumption procedures and theory revision systems, implementing flexible matching, supporting instance-based learning and conceptual clustering. Unfortunately, few works on this subject are available in the literature. This paper focuses on Horn clauses, which are the basis for the Logic Programming paradigm, and proposes a novel similarity formula and evaluation criteria for identifying the descriptions components that are more similar and hence more likely to correspond to each other, based only on their syntactic structure. Experiments on real-world datasets prove the effectiveness of the proposal, and the efficiency of the corresponding implementation in the above tasks.

A General Similarity Framework for Horn Clause Logic

FERILLI, Stefano;BASILE, TERESA MARIA;DI MAURO, NICOLA;ESPOSITO, Floriana
2009-01-01

Abstract

First-Order Logic formulæ are a powerful representation formalism characterized by the use of relations, that cause serious computational problems due to the phenomenon of indeterminacy (various portions of one description are possibly mapped in different ways onto another description). Being able to identify the correct corresponding parts of two descriptions would help to tackle the problem: hence, the need for a framework for the comparison and similarity assessment. This could have many applications in Artificial Intelligence: guiding subsumption procedures and theory revision systems, implementing flexible matching, supporting instance-based learning and conceptual clustering. Unfortunately, few works on this subject are available in the literature. This paper focuses on Horn clauses, which are the basis for the Logic Programming paradigm, and proposes a novel similarity formula and evaluation criteria for identifying the descriptions components that are more similar and hence more likely to correspond to each other, based only on their syntactic structure. Experiments on real-world datasets prove the effectiveness of the proposal, and the efficiency of the corresponding implementation in the above tasks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/118622
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 27
social impact