We analyze the extension of the well known relation between Brownian motion and the Schrödinger equation to the family of the Lévy processes. We consider a Lévy-Schrödinger equation where the usual kinetic energy operator - the Laplacian - is generalized by means of a self-adjoint, pseudo-differential operator whose symbol is the logarithmic characteristic of an infinitely divisible law. The Lévy-Khintchin formula shows then how to write down this operator in an integro-differential form. When the underlying Lévy process is stable we recover as a particular case the fractional Schrödinger equation. A few examples are finally given and we find that there are physically relevant models - such as a form of the relativistic Schrödinger equation - that are in the domain of the non stable Lévy-Schrödinger equations.

Lévy processes and Schrödinger equation

CUFARO PETRONI, Nicola;
2009

Abstract

We analyze the extension of the well known relation between Brownian motion and the Schrödinger equation to the family of the Lévy processes. We consider a Lévy-Schrödinger equation where the usual kinetic energy operator - the Laplacian - is generalized by means of a self-adjoint, pseudo-differential operator whose symbol is the logarithmic characteristic of an infinitely divisible law. The Lévy-Khintchin formula shows then how to write down this operator in an integro-differential form. When the underlying Lévy process is stable we recover as a particular case the fractional Schrödinger equation. A few examples are finally given and we find that there are physically relevant models - such as a form of the relativistic Schrödinger equation - that are in the domain of the non stable Lévy-Schrödinger equations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/11855
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact