We consider matrix valued functions of two parameters in a simply connected region $\Omega$. We propose a new criterion to detect when such functions have coalescing singular values. For {\it generic\/} coalescings, the singular values come together in a ``double cone''-like intersection. We relate the existence of any such singularity to the periodic structure of the orthogonal factors in the singular value decomposition of the one-parameter matrix function obtained restricting to closed loops in $\Omega$. Our theoretical result is very amenable to approximate numerically the location of the singularities.

Two-Parameter SVD: Coalescing Singular Values and Periodicity

PUGLIESE, Alessandro
2009-01-01

Abstract

We consider matrix valued functions of two parameters in a simply connected region $\Omega$. We propose a new criterion to detect when such functions have coalescing singular values. For {\it generic\/} coalescings, the singular values come together in a ``double cone''-like intersection. We relate the existence of any such singularity to the periodic structure of the orthogonal factors in the singular value decomposition of the one-parameter matrix function obtained restricting to closed loops in $\Omega$. Our theoretical result is very amenable to approximate numerically the location of the singularities.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/11829
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact