Collaborative and content-based filtering are the recommendation techniques most widely adopted to date. Traditional collaborative approaches compute a similarity value between the current user and each other user by taking into account their rating style, that is the set of ratings given on the same items. Based on the ratings of the most similar users, commonly referred to as neighbors, collaborative algorithms compute recommendations for the current user. The problem with this approach is that the similarity value is only computable if users have common rated items. The main contribution of this work is a possible solution to overcome this limitation. We propose a new content-collaborative hybrid recommender which computes similarities between users relying on their content-based profiles, in which user preferences are stored, instead of comparing their rating styles. In more detail, user profiles are clustered to discover current user neighbors. Content-based user profiles play a key role in the proposed hybrid recommender. Traditional keyword-based approaches to user profiling are unable to capture the semantics of user interests. A distinctive feature of our work is the integration of linguistic knowledge in the process of learning semantic user profiles representing user interests in a more effective way, compared to classical keyword-based profiles, due to a sense-based indexing. Semantic profiles are obtained by integrating machine learning algorithms for text categorization, namely a naive Bayes approach and a relevance feedback method, with a word sense disambiguation strategy based exclusively on the lexical knowledge stored in the WordNet lexical database. Experiments carried out on a content-based extension of the EachMovie dataset show an improvement of the accuracy of sense-based profiles with respect to keyword-based ones, when coping with the task of classifying movies as interesting (or not) for the current user. An experimental session has been also performed in order to evaluate the proposed hybrid recommender system. The results highlight the improvement in the predictive accuracy of collaborative recommendations obtained by selecting like-minded users according to user profiles.
A Content-Collaborative Recommender that Exploits WordNet-based User Profiles for Neighborhood Formation
DEGEMMIS, MARCO;LOPS, PASQUALE;SEMERARO, Giovanni
2007-01-01
Abstract
Collaborative and content-based filtering are the recommendation techniques most widely adopted to date. Traditional collaborative approaches compute a similarity value between the current user and each other user by taking into account their rating style, that is the set of ratings given on the same items. Based on the ratings of the most similar users, commonly referred to as neighbors, collaborative algorithms compute recommendations for the current user. The problem with this approach is that the similarity value is only computable if users have common rated items. The main contribution of this work is a possible solution to overcome this limitation. We propose a new content-collaborative hybrid recommender which computes similarities between users relying on their content-based profiles, in which user preferences are stored, instead of comparing their rating styles. In more detail, user profiles are clustered to discover current user neighbors. Content-based user profiles play a key role in the proposed hybrid recommender. Traditional keyword-based approaches to user profiling are unable to capture the semantics of user interests. A distinctive feature of our work is the integration of linguistic knowledge in the process of learning semantic user profiles representing user interests in a more effective way, compared to classical keyword-based profiles, due to a sense-based indexing. Semantic profiles are obtained by integrating machine learning algorithms for text categorization, namely a naive Bayes approach and a relevance feedback method, with a word sense disambiguation strategy based exclusively on the lexical knowledge stored in the WordNet lexical database. Experiments carried out on a content-based extension of the EachMovie dataset show an improvement of the accuracy of sense-based profiles with respect to keyword-based ones, when coping with the task of classifying movies as interesting (or not) for the current user. An experimental session has been also performed in order to evaluate the proposed hybrid recommender system. The results highlight the improvement in the predictive accuracy of collaborative recommendations obtained by selecting like-minded users according to user profiles.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.