We introduce a novel method for identifying the modular structures of a network based on the maximization of an objective function: the ratio association. This cost function arises when the communities detection problem is described in the probabilistic autoencoder frame. An analogy with kernel k-means methods allows us to develop an efficient optimization algorithm, based on the deterministic annealing scheme. The performance of the proposed method is shown on real data sets and on simulated networks.
Identification of network modules by optimization of ratio association
ANGELINI, Leonardo;STRAMAGLIA, Sebastiano
2007-01-01
Abstract
We introduce a novel method for identifying the modular structures of a network based on the maximization of an objective function: the ratio association. This cost function arises when the communities detection problem is described in the probabilistic autoencoder frame. An analogy with kernel k-means methods allows us to develop an efficient optimization algorithm, based on the deterministic annealing scheme. The performance of the proposed method is shown on real data sets and on simulated networks.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.