We prove that a CR-integrable almost S-manifold admits a canonical linear connection, which is a natural generalization of the Tanaka– Webster connection of a pseudo-hermitian structure on a strongly pseudo- convex CR manifold of hypersurface type. Hence a CR-integrable almost S-structure on a manifold is canonically interpreted as a reductive Cartan geometry, which is torsion free if and only if the almost S-structure is normal. Contrary to the CR-codimension one case, we exhibit examples of non normal almost S-manifolds with higher CR codimension, whose Tanaka–Webster curvature vanishes.

The Tanaka-Webster connection for almost S-manifolds and Cartan geometry

LOTTA, Antonio;PASTORE, Anna Maria
2004-01-01

Abstract

We prove that a CR-integrable almost S-manifold admits a canonical linear connection, which is a natural generalization of the Tanaka– Webster connection of a pseudo-hermitian structure on a strongly pseudo- convex CR manifold of hypersurface type. Hence a CR-integrable almost S-structure on a manifold is canonically interpreted as a reductive Cartan geometry, which is torsion free if and only if the almost S-structure is normal. Contrary to the CR-codimension one case, we exhibit examples of non normal almost S-manifolds with higher CR codimension, whose Tanaka–Webster curvature vanishes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/115653
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact