We are concerned with $\mathcal K$-manifolds which are a natural generalization of metric quasi-Sasakian ma\-ni\-folds. They are Riemannian manifolds with a compatible $f$-stru\-ctu\-re which admits a parallelizable kernel, have closed Sasaki 2-form and verify a certain normality condition. We study semi-invariant submanifolds of a $\cal K$-manifold and investigate the integrability of the various distributions involved. We also study the normality of semi-invariant submanifolds and present a significant example.

Semi-invariant submanifolds of $K$-manifolds

DI TERLIZZI, Luigia;VERROCA, Francesca;
2012-01-01

Abstract

We are concerned with $\mathcal K$-manifolds which are a natural generalization of metric quasi-Sasakian ma\-ni\-folds. They are Riemannian manifolds with a compatible $f$-stru\-ctu\-re which admits a parallelizable kernel, have closed Sasaki 2-form and verify a certain normality condition. We study semi-invariant submanifolds of a $\cal K$-manifold and investigate the integrability of the various distributions involved. We also study the normality of semi-invariant submanifolds and present a significant example.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/115467
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact