The common practices of machine learning appear to be frustrated by a number of theoretical results denying the possibility of any meaningful implementation of a “superior” learning algorithm. However, there exist some general assumptions that, even when overlooked, preside the activity of researchers and practitioners. A thorough reflection over such essential premises brings forward the meta-learning approach as the most suitable for escaping the long-dated riddle of induction claiming also an epistemologic soundness. Several examples of meta-learning models can be found in literature, yet the combination of computational intelligence techniques with meta-learning models still remains scarcely explored. Our contribution to this particular research line consists in the realisation of Mindful, a meta-learning system based on the neuro-fuzzy hybridisation. We present the Mindful system firstly situating it inside the general context of the meta-learning frameworks proposed in literature. Finally, a complete session of experiments is illustrated, comprising both base-level and meta-level learning activity. The appreciable experimental results underline the suitability of the Mindful system for managing past accumulated learning experience while facing novel tasks.

Computational Intelligence for Meta-Learning: A Promising Avenue of Research

CASTIELLO, CIRO;FANELLI, Anna Maria
2011-01-01

Abstract

The common practices of machine learning appear to be frustrated by a number of theoretical results denying the possibility of any meaningful implementation of a “superior” learning algorithm. However, there exist some general assumptions that, even when overlooked, preside the activity of researchers and practitioners. A thorough reflection over such essential premises brings forward the meta-learning approach as the most suitable for escaping the long-dated riddle of induction claiming also an epistemologic soundness. Several examples of meta-learning models can be found in literature, yet the combination of computational intelligence techniques with meta-learning models still remains scarcely explored. Our contribution to this particular research line consists in the realisation of Mindful, a meta-learning system based on the neuro-fuzzy hybridisation. We present the Mindful system firstly situating it inside the general context of the meta-learning frameworks proposed in literature. Finally, a complete session of experiments is illustrated, comprising both base-level and meta-level learning activity. The appreciable experimental results underline the suitability of the Mindful system for managing past accumulated learning experience while facing novel tasks.
2011
978-3-642-20979-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/114779
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact