Biological systems consist of many components and interactions between them. In Systems Biology the principal problem is modeling complex biological systems and reconstructing interactions between their building blocks. Symbolic machine learning approaches have the power to model structured domains and relations among objects. However biological domains require uncertainty handling due to their hidden complex nature. Statistical machine learning approaches have the potential to model uncertainty in a robust manner. In this paper we apply a hybrid symbolic-statistical framework to modeling metabolic pathways and show through experiments that complex phenomenon such as biochemical reactions in cell's metabolic networks can be modeled and simulated in the proposed framework.

A Hybrid Symbolic-Statistical Approach to Modeling Metabolic Networks

FERILLI, Stefano;DI MAURO, NICOLA;BASILE, TERESA MARIA
2007-01-01

Abstract

Biological systems consist of many components and interactions between them. In Systems Biology the principal problem is modeling complex biological systems and reconstructing interactions between their building blocks. Symbolic machine learning approaches have the power to model structured domains and relations among objects. However biological domains require uncertainty handling due to their hidden complex nature. Statistical machine learning approaches have the potential to model uncertainty in a robust manner. In this paper we apply a hybrid symbolic-statistical framework to modeling metabolic pathways and show through experiments that complex phenomenon such as biochemical reactions in cell's metabolic networks can be modeled and simulated in the proposed framework.
2007
978-3-540-74817-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/113602
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact