For many real-world applications it is important to choose the right representation language. While the setting of First Order Logic (FOL) is the most suitable one to model the multi-relational data of real and complex domains, on the other hand it puts the question of the computational complexity of the knowledge induction process. A way of tackling the complexity of such real domains, in which a lot of relationships are required to model the objects involved, is to use a method that reformulates a multi-relational learning task into an attribute-value one. In this chapter we present an approximate reasoning method able to keep low the complexity of a relational problem by using a stochastic inference procedure. The complexity of the relational language is decreased by means of a propositionalization technique, while the NP-completeness of the deduction is tackled using an approximate query evaluation. The proposed approximate reasoning technique has been used to solve the problem of relational rule induction as well as the task of relational clustering. An anytime algorithm has been used for the induction, implemented by a population based method, able to efficiently extract knowledge from relational data, while the clustering task, both unsupervised and supervised, has been solved using a Partition Around Medoid (PAM) clustering algorithm. The validity of the proposed techniques has been proved making an empirical evaluation on real-world datasets.
Approximate Relational Reasoning by Stochastic Propositionalization
DI MAURO, NICOLA;BASILE, TERESA MARIA;FERILLI, Stefano;ESPOSITO, Floriana
2010-01-01
Abstract
For many real-world applications it is important to choose the right representation language. While the setting of First Order Logic (FOL) is the most suitable one to model the multi-relational data of real and complex domains, on the other hand it puts the question of the computational complexity of the knowledge induction process. A way of tackling the complexity of such real domains, in which a lot of relationships are required to model the objects involved, is to use a method that reformulates a multi-relational learning task into an attribute-value one. In this chapter we present an approximate reasoning method able to keep low the complexity of a relational problem by using a stochastic inference procedure. The complexity of the relational language is decreased by means of a propositionalization technique, while the NP-completeness of the deduction is tackled using an approximate query evaluation. The proposed approximate reasoning technique has been used to solve the problem of relational rule induction as well as the task of relational clustering. An anytime algorithm has been used for the induction, implemented by a population based method, able to efficiently extract knowledge from relational data, while the clustering task, both unsupervised and supervised, has been solved using a Partition Around Medoid (PAM) clustering algorithm. The validity of the proposed techniques has been proved making an empirical evaluation on real-world datasets.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.