Automatic processing of text documents requires techniques that can go beyond the lexical level, and are able to handle the semantics underlying natural language sentences. A support for such techniques can be provided by taxonomies that connect terms to the underlying concepts, and concepts to each other according to different kinds of relationships. An outstanding example of such a kind of resources is WordNet. On the other hand, whenever automatic inferences are to be made on a given domain, a generalization technique, and corresponding operational procedures, are needed. This paper proposes a generalization technique for taxonomic information and applies it to WordNet, providing examples that prove its behavior to be sensible and effective.
A Taxonomic Generalization Technique for Natural Language Processing
FERILLI, Stefano;DI MAURO, NICOLA;BASILE, TERESA MARIA;ESPOSITO, Floriana
2011-01-01
Abstract
Automatic processing of text documents requires techniques that can go beyond the lexical level, and are able to handle the semantics underlying natural language sentences. A support for such techniques can be provided by taxonomies that connect terms to the underlying concepts, and concepts to each other according to different kinds of relationships. An outstanding example of such a kind of resources is WordNet. On the other hand, whenever automatic inferences are to be made on a given domain, a generalization technique, and corresponding operational procedures, are needed. This paper proposes a generalization technique for taxonomic information and applies it to WordNet, providing examples that prove its behavior to be sensible and effective.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.